Structural tuning of photoluminescence in nanoporous anodic alumina by hard anodization in oxalic and malonic acids

نویسندگان

  • Abel Santos
  • Maria Alba
  • Mahbubur M Rahman
  • Pilar Formentín
  • Josep Ferré-Borrull
  • Josep Pallarès
  • Lluis F Marsal
چکیده

We report on an exhaustive and systematic study about the photoluminescent properties of nanoporous anodic alumina membranes fabricated by the one-step anodization process under hard conditions in oxalic and malonic acids. This optical property is analysed as a function of several parameters (i.e. hard anodization voltage, pore diameter, membrane thickness, annealing temperature and acid electrolyte). This analysis makes it possible to tune the photoluminescent behaviour at will simply by modifying the structural characteristics of these membranes. This structural tuning ability is of special interest in such fields as optoelectronics, in which an accurate design of the basic nanostructures (e.g. microcavities, resonators, filters, supports, etc.) yields the control over their optical properties and, thus, upon the performance of the nanodevices derived from them (biosensors, interferometers, selective filters, etc.).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordered Nanoporous Alumina Membranes Formed in Oxalic/Phosphoric Acid Using Hard Anodization

Highly self-ordered alumina nanopore arrays were fabricated using hard anodization technique in different mixtures of oxalic/phosphoric acid. The phosphoric acid concentration was varied from 0.05 to 0.3 M while the oxalic acid concentration was changed between 0.3 and 0.4 M. The self ordered nanoporous arrays were obtained in anodization voltage changing from 130 to 200 V. The interpore distan...

متن کامل

Fabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method

Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum ox...

متن کامل

Fabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method

Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum ox...

متن کامل

Effect of the anodization voltage on the pore-widening rate of nanoporous anodic alumina

A detailed study of the pore-widening rate of nanoporous anodic alumina layers as a function of the anodization voltage was carried out. The study focuses on samples produced under the same electrolyte and concentration but different anodization voltages within the self-ordering regime. By means of ellipsometry-based optical characterization, it is shown that in the pore-widening process, the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012